Lifelong Physical Activity Prevents Aging-Associated Insulin Resistance in Human Skeletal Muscle Myotubes via Increased Glucose Transporter Expression
نویسندگان
چکیده
Both aging and physical inactivity are associated with increased development of insulin resistance whereas physical activity has been shown to promote increased insulin sensitivity. Here we investigated the effects of physical activity level on aging-associated insulin resistance in myotubes derived from human skeletal muscle satellite cells. Satellite cells were obtained from young (22 yrs) normally active or middle-aged (56.6 yrs) individuals who were either lifelong sedentary or lifelong active. Both middle-aged sedentary and middle-aged active myotubes had increased p21 and myosin heavy chain protein expression. Interestingly MHCIIa was increased only in myotubes from middle-aged active individuals. Middle-aged sedentary cells had intact insulin-stimulated Akt phosphorylation however, the same cell showed ablated insulin-stimulated glucose uptake and GLUT4 translocation to the plasma membrane. On the other hand, middle-aged active cells retained both insulin-stimulated increases in glucose uptake and GLUT4 translocation to the plasma membrane. Middle-aged active cells also had significantly higher mRNA expression of GLUT1 and GLUT4 compared to middle-aged sedentary cells, and significantly higher GLUT4 protein. It is likely that physical activity induces a number of stable adaptations, including increased GLUT4 expression that are retained in cells ex vivo and protect, or delay the onset of middle-aged-associated insulin resistance. Additionally, a sedentary lifestyle has an impact on the metabolism of human myotubes during aging and may contribute to aging-associated insulin resistance through impaired GLUT4 localization.
منابع مشابه
Conjugated linoleic acid supplementation enhances insulin sensitivity and peroxisome proliferator-activated receptor gamma and glucose transporter type 4 protein expression in the skeletal muscles of rats during endurance exercise
Objective(s):This study examined whether conjugated linoleic acid (CLA) supplementation affects insulin sensitivity and peroxisome proliferator-activated receptor gamma (PPAR-γ) and glucose transporter type 4 (GLUT-4) protein expressions in the skeletal muscles of rats during endurance exercise. Materials and Methods:Sprague-Dawley male rats were randomly divided into HS (high-fat diet (HFD) s...
متن کاملsiRNA-Mediated Reduction of Inhibitor of Nuclear Factor-κB Kinase Prevents Tumor Necrosis Factor-α–Induced Insulin Resistance in Human Skeletal Muscle
OBJECTIVE Proinflammatory cytokines contribute to systemic low-grade inflammation and insulin resistance. Tumor necrosis factor (TNF)-alpha impedes insulin signaling in insulin target tissues. We determined the role of inhibitor of nuclear factor-kappaB kinase (IKK)beta in TNF-alpha-induced impairments in insulin signaling and glucose metabolism in skeletal muscle. RESEARCH DESIGN AND METHODS...
متن کاملHigh leptin levels acutely inhibit insulin-stimulated glucose uptake without affecting glucose transporter 4 translocation in l6 rat skeletal muscle cells.
Obesity is a major risk factor for the development of insulin resistance, characterized by impaired stimulation of glucose disposal into muscle. The mechanisms underlying insulin resistance are unknown. Here we examine the direct effect of leptin, the product of the obesity gene, on insulin-stimulated glucose uptake in cultured rat skeletal muscle cells. Preincubation of L6 myotubes with leptin...
متن کاملThe Effect of Curcumin on GLUT4 Gene Expression as a Diabetic Resistance Marker in C2C12 Myoblast Cells
Objective: Adipocyte and skeletal muscle are important tissues which contribute the development and progression of metabolic disorder. Insulin has a major regulatory function on glucose metabolism in these tissues by redistributing glucose transporter (GLUT4) from intracellular vesicles to the cell surface. Today, due to the side effects of chemical medications attendance to herbal medicines is...
متن کاملIncreased IGFR activity and glucose transport in cultured skeletal muscle from insulin receptor null mice.
We have studied the role of the insulin receptor (IR) in metabolic and growth-promoting effects of insulin on primary cultures of skeletal muscle derived from the limb muscle of IR null mice. Cultures of IR null skeletal muscle displayed normal morphology and spontaneous contractile activity. Expression of muscle-differentiating proteins was slightly reduced in myoblasts and myotubes of the IR ...
متن کامل